Targeting of the plant vacuolar sorting receptor BP80 is dependent on multiple sorting signals in the cytosolic tail.
نویسندگان
چکیده
Although signals for vacuolar sorting of soluble proteins are well described, we have yet to learn how the plant vacuolar sorting receptor BP80 reaches its correct destination and recycles. To shed light on receptor targeting, we used an in vivo competition assay in which a truncated receptor (green fluorescent protein-BP80) specifically competes with sorting machinery and causes hypersecretion of BP80-ligands from tobacco (Nicotiana tabacum) leaf protoplasts. We show that both the transmembrane domain and the cytosolic tail of BP80 contain information necessary for efficient progress to the prevacuolar compartment (PVC). Furthermore, the tail must be exposed on the correct membrane surface to compete with sorting machinery. Mutational analysis of conserved residues revealed that multiple sequence motifs are necessary for competition, one of which is a typical Tyr-based motif (YXXPhi). Substitution of Tyr-612 for Ala causes partial retention in the Golgi apparatus, mistargeting to the plasma membrane (PM), and slower progress to the PVC. A role in Golgi-to-PVC transport was confirmed by generating the corresponding mutation on full-length BP80. The mutant receptor was partially mistargeted to the PM and induced the secretion of a coexpressed BP80-ligand. Further mutants indicate that the cytosolic tail is likely to contain other information besides the YXXPhi motif, possibly for endoplasmic reticulum export, endocytosis from the PM, and PVC-to-Golgi recycling.
منابع مشابه
Targeting of the Plant Vacuolar Sorting Receptor BP80 Is Dependent on Multiple Sorting Signals in the Cytosolic Tail W
Although signals for vacuolar sorting of soluble proteins are well described, we have yet to learn how the plant vacuolar sorting receptor BP80 reaches its correct destination and recycles. To shed light on receptor targeting, we used an in vivo competition assay in which a truncated receptor (green fluorescent protein-BP80) specifically competes with sorting machinery and causes hypersecretion...
متن کاملReceptor salvage from the prevacuolar compartment is essential for efficient vacuolar protein targeting.
We have characterized the requirements to inhibit the function of the plant vacuolar sorting receptor BP80 in vivo and gained insight into the crucial role of receptor recycling between the prevacuolar compartment and the Golgi apparatus. The drug wortmannin interferes with the BP80-mediated route to the vacuole and induces hypersecretion of a soluble BP80-ligand. Wortmannin does not prevent re...
متن کاملGolgi-dependent transport of vacuolar sorting receptors is regulated by COPII, AP1, and AP4 protein complexes in tobacco.
The cycling of vacuolar sorting receptors (VSRs) between early and late secretory pathway compartments is regulated by signals in the cytosolic tail, but the exact pathway is controversial. Here, we show that receptor targeting in tobacco (Nicotiana tabacum) initially involves a canonical coat protein complex II-dependent endoplasmic reticulum-to-Golgi bulk flow route and that VSR-ligand intera...
متن کاملThe cytosolic tail dipeptide Ile-Met of the pea receptor BP80 is required for recycling from the prevacuole and for endocytosis.
Pea (Pisum sativum) BP80 is a vacuolar sorting receptor for soluble proteins and has a cytosolic domain essential for its intracellular trafficking between the trans-Golgi network and the prevacuole. Based on mammalian knowledge, we introduced point mutations in the cytosolic region of the receptor and produced chimeras of green fluorescent protein fused to the transmembrane domain of pea BP80 ...
متن کاملThe GTPase ARF1p controls the sequence-specific vacuolar sorting route to the lytic vacuole.
We have studied the transport of soluble cargo molecules by inhibiting specific transport steps to and from the Golgi apparatus. Inhibition of export from the Golgi via coexpression of a dominant-negative GTP-restricted ARF1 mutant (Q71L) inhibits the secretion of alpha-amylase and simultaneously induces the secretion of the vacuolar protein phytepsin to the culture medium. By contrast, specifi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Plant cell
دوره 18 6 شماره
صفحات -
تاریخ انتشار 2006